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Abstract. Rational solutions for the PainléMV equation are investigated by Hirota bilinear
formalism. It is shown that the solutions in one hierarchy are expressed by 3-reduced Schur
functions, and those in another two hierarchies by Casorati determinants of the Hermite
polynomials, or by a special case of the Schur polynomials.

1. Introduction

It is known that the six Painlé&vequations P-R,, are the fundamental equations in the theory

of nonlinear integrable systems in wider sense, and thus their solutions are regarded as the
‘nonlinear version of special functions’ [1]. Not only for the use of Paigleguations in

a physical context, they also have many interesting mathematical structures, one of which
is the structure of particular solutions. As for the algebraic solutions, it is known that
some of the Painlérequations admit rational solutions expressed by classical polynomials,
e.g. Jacobi and Legendre polynomials fqi,ALaguerre polynomials for\Pand Hermite
polynomials for R,. However, there also arise some non-classical polynomials, as pointed
out by Umemura [2]. A typical example is the Yablonskii-Vorobe'v polynomials which
appear in the rational solutions of; P

d’y 3
Let7, (m=0,1,...) be polynomials generated recursively by

d2T, a7, \* 1

T — | == ) = (T2 = Tpyi1 T To=T =1 2

a2 < @ > 4( m +1Tm-1) o=" (2)
Then, it is known that

d Tm+l

y=glo9 o 3)

satisfies i with « = —m — 1 [3, 4]. The characteristic polynomialg, are called the

Yablonskii—-Vorobe'v polynomials. To clarify the nature of these polynomials, it is useful
to study the relation with the soliton equations. In fagt, i® derived from the similarity
reduction of the modified KdV equation. This fact implies that the Yablonskii-Vorobe'v
polynomials are closely related to thefunction which gives the rational solutions of the
modified KdV equations. Based on this expectation, we have shown in the previous paper
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that Yablonskii—Vorobe'v polynomials are expressed as the specialization of the 2-reduced
Schur functions [5].
In this article, we investigate the rational solutions fgy,P

2 2
%:%(Z—?) +:—;w3+4zw2+2(z2—a)w+§ 4)
wherea and g are parameters. There are various simple particular solutions of physical
importance [6], and it is possible to obtain solutions of ‘higher order’ by applying the
Backlund transformations [6—9] which map one solution to another solutionyofvizgh
different values of parameters. As for rational solutions gf(4, it is known that there
are three hierarchies of unique rational solutions [7] (the name of the hierarchies are due to
[10]),

‘—1/z hierarchy’:

- —Pgl((z)) (@, B) = (k, =21+ 21 + k)?) kileZ, 1<-1 k<=2 (5)
n(z
‘—2z hierarchy”:
w=—27+ Pgt(i) (o, B) = (k, —2(1 + 2 + k)?) kleZ 1>0, k<—I(6)
(2
‘—%z hierarchy’:
_ _g Pnfl(z) _ _ 1 2
w=—zz+ 0.@ (a, B) = (2k, —2(£3 + 2))) R

(2 + 1, —2(+3 + 21)%) kileZ

whereP,,(z) and Q,,(z) are some polynomials in of degreen, and that there are no other
rational solutions.

Lukashevich has shown that the simplest solutions in the first two hierarchies
are expressed by the Hermite polynomials [11]. Okamoto has studied dokluBd
transformations and shown that the log derivative of ratio of two-directional Wronskians of
the Hermite polynomials give the solutions qf  H12]. Moreover, Murata [7] has pointed
out that any solution in the-1/z hierarchy can be transformed to a solution in th2z
hierarchy, and vice versa. This fact strongly implies that these two hierarchies have the
same nature, and the solutions may be expressed by a log derivative of the ratio of some
determinants whose entries are related to the Hermite polynomials. Those determinants
are called ther functions. We investigate these hierarchies by using the Hirota’s bilinear
formalism and show that all of the solutions in those hierarchies are expressed by the
functions which is nothing but the Casorati determinants (or equivalently, the Wronskians)
of the Hermite polynomials. Moreover, thefunctions are also expressible in terms of the
Schur functions.

The structure of the solutions i-H%z hierarchy has been unknown, but Okamoto [12]
has studied this hierarchy and obtained the following result.

Proposition 1.1 (Okamoto).et Q,,, m € Z=o, be polynomials int generated by

d? m m—
dleong+x2+2m—1=—Q +Q1§ ! Qo=01=1 (8)
Then
d m
u:—logQ +1

&9 ~F 9)
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satisfies R,

d?u 1 (du)\> 3 3 9/, 4 1

W_Z(a>+éu +6xu+§<x—§m>u—5. (10)
Similarly, let R,,, m € Z>o, be polynomials inx generated by

d2 RITL Rlﬂf

Wlong+x2+2m=% Ro=1 Ry = x. (11)
Then

d Riny1
= —I| — 12

u=g;109 %~ (12)

satisfies R/,

u 1 (du)? 3, 9/, 4 1 4

The characteristic polynomial8,, andR,, are called the Okamoto polynomials [2]. Indeed,
the solutions which are expressed by the Okamoto polynomials are a special case of the
—22 hierarchy.

The key to understanding the nature of the Okamoto polynomials lies in the relation
with soliton equations, as in the case qf. Hn fact, several authors have pointed out the
relation between | and the Boussinesq equation [13-16] which belongs to the 3-reduction
of the KP hierarchy [17]. This implies that some solutions gf Ray be understood as the
similarity reduction of the 3-reduced KP hierarchy. We show that the solutions in§lze
hierarchy is indeed the case, namely they are expressed by the 3-reduced Schur functions.

2. —Zz Hierarchy

Let us consider the Schur functions in, x,, ... labelled by the Young diagrani =
(i1, 02,13, ..., 01), i1 2 i22--- 21 20,
Piy Pi+1 0 Pi4i-1
Di,—1 Pi, T Pigti-2
Sy(x1, x2,...) = ) . . (14)
Pi—-i+1  DPi-1+2 - Pi,
where p,'s are polynomials iny, x», ... defined by
(o] o0
Zpk(xl, x2, .. Ak = expz XAk pn =00 < 0). (15)
k=0 n=1

It is well known thatSy is at function of the KP hierarchy [17].
We consider the 3-reduction of thefunction, namely, we impose the condition,
a‘L'y

T _o k=12 .... (16)
0x31

To realize this condition, it is sufficient to restrict the Young diagram as
Y=M+2n,M+2n—2,....M+2,M> (M—1)72 ..., 2%1% (17)
or
Y=(N+21n—1,N+21—-3,...,N+1, N2 (N—-1)2...,2%,1%. (18)
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In fact, we can easily verify that the Schur functions associated with the above Young
diagrams satisfy condition (16), by noting the relation,

dPn
8xk

= Pn—k- (19)

For notational simplicity, we rearrange the structure of the Schur polynomials associated
with the Young diagrams (17) and (18) as

P2n-1 P2n DPIN4L  eveeeennn
........... P2N-3 DP2N-2 P2N—-1

.................... pP3 pPa D5

N e Po P1 P2
Ty(X1, X0, o) = | - . (20)

P2m-2  pP2m-1 pP2M e
........... p2N—4 pZN—S p2N—2

We can see the equivalencedf and 3-reduced Schur functions in the following manner,

(21)

N { SM+2n.M+2n—2,... M+2.M2,(M~1)2.....1?) forN=M+n>M
M=

S(N+21-1,N+20-3,...N+L N2 (N-12,....12) for N <M =N +n.
Then, we have the following theorem.

Theorem 2.1letx; =x, x = 3, x; = 0(k = 3,4,...) in t};. Then

_ /2 Thist _ \/§
satisfies R/ (4) with
2 2
Similarly,
2 Tt 3
w = é{(lOQ o —X =53 (24)
satisfies R (4) with
1 2
(0!7,3)2 (—M+2N+2, —2<M+§>> M,NEZ;(). (25)

Remark 2.2.The above solutions cover all of theéz hierarchy, which is easily verified
by comparing the parameters (23) and (25) with (7).

Corollary 2.3. The Okamoto polynomials are the special case of 3-reduced Schur functions,

Ow =14 = Seman—2.2(x 30..) Ry =10 = Seu-121-3..1(x, 3,0,...). (26)

.....
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Theorem 2.1 is proved by considering the similarity reduction of 3-reduction of the first
modified KP hierarchy, namely, hierarchy of theéd&lund transformations of the KP
hierarchy. The first three of the bilinear equations in this hierarchy are given by [17],

(D — D)ty Ty =0 (27)

(D2 +3D,,Dy,)Tiy, Ty =0 (28)

(Df —3D2 D, —6D% )ty 1 Ty =0 (29)
where D, is the Hirota’s bilinear differential operator defined by

DYf-g= (8 — )" f(x)g(x)|x=v" (30)

Next, we apply the similarity reduction.
Lemma 2.4Let 73/ = 7} (x1,x2,0,0,...). Then

1
I Thy = Z((MZ — MN 4 N2+ N)Tl¥ — x19,, 7). (31)

Proof. Note that p;, the entry ofrA’}’, is a homogeneous polynomial itxy, x2, x3, ...)
with degreek if we define the degree of, ask. Puttingx; = 0 (k > 3), thentjy is a
homogeneous polynomial iy, andx, of degreeM? — MN + N? + N. Thus, if we set

1

N _ N

fu = S MP=MN+N?+N)/2 R4 (32)
2

then f,Y depends only om = ;. This implies
X2

3th 1X1d

I ) —_ -1 7N 33
2fM adel‘ M 2x§/2dffM ( )

O far = am = F&fﬁ (34)
which yields

—2x20y, fi1 = X104, fiy - (35)
Rewriting equation (35) in terms afY, we obtain equation (31). O

By using lemma 2.4, all the, derivatives in equations (27)—(29) are rewritten in terms
of x; derivatives as

2 X1 1
(D.m 5 P 5o (@M =N+ 1)) Tirsr Ty =0 (36)
3
(Dfl = 5 (-xDi + @M = N+ 1)Dy, + axl)) Thryr Ty =0 (37)
2
3
4 3 2 2n2
I:Dxl — Z(—Xlel + (ZM — N + 1)DX]_ — Zaxlel) — Kzz(xlel

—2x1(2M — N 4 1)D,, + 3x19,, — (3N? + 4N + 1))},5+1 Ty =0 (38)

respectively, where
axle;lf 8= fx1x1g - fgx1x1 (39)
axlf ‘ g = axl(fg) = fxlg + fgxl' (40)
Puttingx; = x andx, = % we have the following proposition.
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Proposition 2.5.7jy = j(x, 3.0,...) andtjy,, = 7y, (x, 3,0, ...) satisfy the following
bilinear equations,

(D24 xDy —(2M — N + 1)tjy, - 75y =0 (41)
(D3 —3(—xD?+ (2M — N +1)D, + 3, ))tjy,1 Ty =0 (42)
[D? +3xD3 — 3{2x? + (2M — N + 1)}D? + 12x(2M — N + 1) D,

—6(—d, Dy + 3xd1 — (BN? + 4N + )]hy - tiy.q = 0. (43)

Now the proof of theorem 2.1 is straightforward. Dividing equations (41)-(43) by
T3 Tay.1 and using the formulae [19],

Dxr,{,lv -y

M+1
= ¢, 44
. Y 49

D2t .
- 11\7 N M - Pxx + ¢§ (45)
T
M*M+1

Dizyy - T/ZH 3

—_N_N __— ¢xxx + 3¢xpxx + ¢x (46)
TMTM+1

D4l

% = Pxxxx + 4¢x¢xxx + 3105); + 6¢§pxx + ¢;1 (47)
TmMTu+1

a.D. TV . N
# = Qux + Pxpx (48)
™M1
wherep = log(tytyy,,) and¢ = log(z;y, /7)., We obtain

Pex +$2+x¢ —(2M —N+1) =0 (49)
Grxx + 3Pxprr + @2 — 3x(prx + ¢2) +32M — N + D¢, —3p, =0 (50)
Prrer + dprbrrx + 32 + 60200r + ¢ + 3 (Prxx + 3ipur + D)

—32M — N 4+ 14 2x%)(px + ¢2) +12¢(2M — N + )¢,

+6(¢yr + drpx) — 18xp, +6(3N? +4N +1) =0 (51)
respectively. Eliminating and puttingu = ¢, — x, we obtain R,,

u 1 (du)® 3, 9 3 +1

— == = 6xu 4 [ x> —3a |u — 52

2 2u(dx>+2u+xu+(2x )“ 2u (52)
where,

a=2M—-N+1 b=3N?+4N + 1. (53)

This gives half of theorem 2.1. The other half is proved in a similar manner by starting
from the bilinear equations,

(D2 — DTyttt =0 (54)
(D3 +3D,, D)ty ™1y =0 (55)
(D} —3D2 D, — 6Dty 1 =0 (56)
from which we obtain equation (52) for = (logz)y /=) — x with a = —M + 2N + 2

andb = 3M2 + 2M. This completes the proof of theorem 2.1.
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3. —1/z and —2z hierarchies

3.1. = function

As mentioned in the introduction, solutions in thel/z and —2z hierarchies can be
transformed into each other byaBklund transformations. From the view offunctions,
this fact suggests that their functions are the same, and only the relation betweerr the
functions and the dependent variable @f B different.

Definition 3.1.Let H, andH,, n = 0,1, 2. .., be polynomials inx defined by

21 1

> —H,\" = exp (xk - §x2> (57)
n=0 n:

21 1,

> T H" = exp( x4+ Sh (58)
n=0 n:

respectively. Then we define thefunctionsty, and 7y, to be N x N determinants given
by

H, H,1 -+ Hyynaa

T (59)
Hyin-1 Huptn -+ Hppon-2

. Hrf“ Hrf+2 Hn.-'rN (60)
Hiin-r Hion o Hijovez

respectively.
Then, the solutions in the-1/z hierarchy are expressed as follows.
Theorem 3.2.

w=—2 <|Og r:£1>x z= %Zx (61)
give rational solutions of R(4) with
(@, B) = (—(n + 2N + 1), —2n?) n,NelZ n>1 N >0. (62)
Moreover,
w=~/2 (Iog @) = i)c (63)
/s V2

give rational solutions of i2(4) with
(@, B) = (n+ 2N + 1, —2n?) n,NeZ n>1 N >0. (64)
Here, several remarks are in order.

Remark 3.3.

(1) Parametrization equation (62) is equivalent to equation (5) with —k if we put
k=n+2N +1 andl = —(N + 1). Moreover, equation (64) is equivalent to equation (5)
with @ = k if we putk = n+2N +1 andl = —(N +1). Hence the solutions in theorem 3.2
cover all of —1/z hierarchy.
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(2) As shown in the proofs do not necessarily have to be integers and hdticean
be the Hermite—Weber functions. In fact, we need only the recursion relations,

d d
aHn — .X'Hn = _HVH-]- aHn = an_l. (65)
Moreover,t function admits several expressions.

Remark 3.4.
(1) It is possible to express the solutions in terms of the Wronskian, since we have the
relation,

Hn Hn+1 e Hn+N71
Hn+l Hn+2 Hn+N N1
. . . =[]o+0*
. . . k=1
Hyyn-1 Hpyn -+ Hypov—2 v
Hyin-1 %HH-FN—l T (% Hyyn-1
d o? d W
y @ Hntn-1 S Hun-1 o (&) Hupen-1 (66)
N1 N ' oN-2
(&)Y " Hyov-1 (L) Hiwv-1 - (D) Hyin-1

which can be verified by using equation (65).
(2) As is obvious from the Wronskian expression equation (66pnly gives a constant,
which yields a 0 solution of . Thus only the cases af > 1 give nontrivial solutions.
(3) T functions are also expressed by the Schur functions. In fact we have, for example,
o (m+N-— 1)

n = (=DHNN=D25 n(x, 3,0,...) (67)

» 5
where,
k' =k —1*D 2t

which can be verified by noting

A

1
H, = ;pn(x,%,o,...) (68)

and equation (66).
For the solutions in the-2z hierarchy, the following expression is valid.

Theorem 3.5.
w=«/§{<|0grk]ﬁ> —x} zzix (69)
Ty . V2
give rational solutions of | (4) with
(@,f) = (N —n,—2(n+ N +1)?) nNeZ n>0 N >0. (70)
Remark 3.6.

(1) Parametrization equation (70) is equivalent to equation (6), if wekputN — n,
I = N. Hence the solutions in theorem 3.5 covers all the solutions in-tehierarchy.

(2) Anotherz function 7}, (60) can give the solution of the same type fgy.PIn fact,
we can show that

wz—fz{mg(fjj—ﬁ) —x} P (71)
T

N
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satisfies R with the parametergx, 8) = (n — N, —2(n + N +1)?). This parametrization is
also equivalent to equation (6), if we put=n— N, [ = n. However, the uniqueness of the
rational solutions [7, 18] implies that they give the same solution as given in theorem 3.5.
In fact, we can check that andw are the same if we exchangeand N.

3.2. Proof of theorems

In this section, we give the proof of the theorems 3.2 and 3.5. The first half of theorem 3.2
is a direct consequence of the following proposition.

Proposition 3.7.7}, satisfies the following bilinear equations.
(D2 —xDy +n)ty - =0 (72)
d
(Df —6xD?+ (5x* +n — 4N — 2)D, + Fi 5nx) Tye1 Ty =0 (73)
(DY — 4xD? + (11x* — 8n — 28N — 14 D?

d
_230" — 2x(4x%® — 3n — 20N — 10) D,

d
-3+ 8nx? — n(9n + 28N + 14)) g =0. (74)

The second half of theorem 3.2 is derived from the following bilinear equations.
Proposition 3.8.7y, satisfies the following bilinear equations.
(D24 xDy —n)ty. - tn =0 (75)

d
(Df +6xD? + (5x% —n+4N + 2)D, — Fe 5nx) T tw=0 (76)

(Dj +4xD3 + (11x? + 8n + 28N + 14)D?

d
—i-Zan + 2x(4x? + 3n 4 20N + 10) D,

d
~3r - - 8nx% — n(9n + 28N + 14)) o -th=0. (77)

Finally, theorem 3.5 is obtained from the following bilinear equations.
Proposition 3.9.7}; satisfies the following bilinear equations.
(D2 —xDy+n—N)th, -ttt =0 (78)

d
(Dj —6xD?+ (5x +n— N)D, + —

o 5(n — N)x) Thy1 rl'\',"'l =0 (79)

d
(Dj —4xD3 4+ (11x% — 81 — 28N — 18)D? + 2-Dx

d
—2x(4x> = 3n — 15N — 9)D, — e 8(n — N)x?

—(9n2 + 10Nn + 14n — 27N? — 22N)>r;5+1 -ttt =o. (80)

To prove propositions 3.7-3.9, we first introduce the notatippn
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Definition 3.10.Let Y = (i1, i», ..., ;) be a Young diagram. Then we define Anx N
determinantry,, by

H, Hyp1 -+ Hpyn-n-1 HpgN-iti, 0 Hognv-24ip,  Hogn-1+4ig
; Hyv1 Hpv2 -+ Hpgn-n HyvN-h+1+i,  +  Hpgn-14ip HyiN+iy
Ny = : : : : : : : (81)
Hyvn-1 Hy -+ Hpyon—n-2 Hyton—n—1+i, -+ Hpyon-3+i,  Hpt2n-2+iy

It is possible to derive the bilinear equations from théidRer relations which are
identities between the determinants whose columns are shifted. In fact, proposition 3.7 is
obtained from the following identities.

Lemma 3.11.

n n n n n n —

TN 1TV — TypanTyvo + Ty Ty =0 (82)
n n n n n n —

TN TN — TNp1nTyvo + Ty Tyon = 0 (83)
n n n n n_n —

TN 1Ty — Ty gty + Ty Ty g = 0 (84)
n n n n n_n —

TN 0TV — Ty Ty + Ty Ty = 0. (85)

Proposition 3.8 is derived from the same identitytfn Similarly, we obtain proposition 3.9
from the following identities.

Lemma 3.12.

n n+1 n n+1 n n+l

TvpHTy - — TvanTy 0+ vty m=0 (86)
n n+1 n n+1 n n+1 _

NAJ TN -~ TNty O Ty Ty 0o = (87)
n n+1 n n+1 n_n+1l _

Ty4aTy om — Typomty o+ IvTyygo =0 (88)
n n+1 n n+1 n+l_n _

TNp10Ty o~ TypamTy m+ Ty IN+1FH = 0. (89)

We give the derivations of lemmas 3.11 and 3.12 in the appendix.
We next construct the shift operators which are differential operators genergting
from t, by using the technique developed in [20, 5]. In fact, we have the following lemma.

Lemma 3.13.

d
Tyo = (—a + xN) Ty (90)

Proof. Note thatry is expressed by

Hn+1 Hn+2 Tt Hn+N A1 A - Ay
H +2 Hl +3 tt H +N+1 Az]_ A22 - AZN

7,'1]\11[[ = ’1 1 . ! . . : : . : (91)
Hn+N Hn+N+1 te Hn+2N—1 Ayt An2 -+ Apnny

whereA;; is the (i, j)-cofactor ofry, andA - B denotes a standard scalar productfox N
matricesA = (g;;) and B = (b;;) which is defined as

N
A-B= Zaijb,-j =TrA'B. (92)

i,j=1
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The first matrix of (91) is rewritten by using the recursion relation (65) as

8x Hn 8xl—ln+l o 8x Hn+N—l
ax Hn+l ax Hn+2 e ax Hn+N
ax Hn+N71 8xlinJrN e ax Hn+2N72
H, Hy1 -+ Hynaa
Hyt1 Hyy2 -+ Hpywn
+x| S Tl (93)
Hyyn-1 Hypin -+ Hppon-2

Then applying the dot product to equation (93), we obtain
d
Tyo = (—a + xN) TN. (94)
Thus we have proved lemma 3.13. |

For the shift operators of second order, we have the following.

Lemma 3.14.
n 1/ d? d 2 "
n 1 d2 d 2 n
TNH=§ @—(ZN—J.)XE—FN(N—I)X +N(N+I’l—1) Ty (96)

Proof. We consider

H,y1 Hyo -+ Hygno1 Hpgnga
Hn+2 Hn+3 e Hn+N Hn+N+2
n n_ __
Tym + TNE‘ = . . .
HH+N Hn+N+l e Hﬂ+2N72 Hn+2N
Ay Apz - Aoy
Ampr Az -+ Amw
: o : ©97)
Apnt Apn2 --- Apww

where Am;; is (i, j) cofactor ofrym. The first matrix in the right-hand side is equal to

ax Hn axI—IrH—l o ax Hn+N—2 8x Hn+N
8an+]_ ax Hn+2 e 8)5 Hn+Nfl 8xI'IthNJrl
ax Hn+N71 ax Hn+N te ax Hn+2Nfl ax Hn+2N71
Hn Hn+l T Hn+N—2 HI‘H-N
. Her H;f+2 : : Hn+'1v71 Hn+'1v+1 . (98)

Hyyn-1 Huyyny -+ Hpponoi Hppon-a
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Applying the dot product to equation (98), we obtain,

d
et g = (g + 3N ) ke

o &Nd N +x2N?) ! (99)
=\ - - — X Ty-
dx? dx N
Next we consider the following equality,
H, 2 H,3 - Hpynn Ain A - Ay
H, 3 Hy 4 <o Hyyini2 Axr Aoy -+ Aoy
no-tng= S N - |- oo
Hyiny1 Hpini2 -+ Hpgon Ayt Anz2 -+ Apn
The first matrix of the right hand side of (100) is rewritten as
ax Hn+1 ax Hn+2 T ax Hn+N
8x Hn+2 ax Hn-‘r3 te ax Hn+N+l
8x Hn+N 8an+N+l e ax H11+2N71
Hyq1 Hy 2 T Hyn
Hn 2 Hn 3 T Hn N+1
| T o B B (101)
Hywn Hpxn+1 -+ Hpponaa
The first matrix of equation (101) is rewritten as
(n+ 1)Hn (n+ Z)HrH—l to (n+ N)HIH-N—].
(n+2)Hyia (n+3)Hyi2 o (n+N+DHun
(n+N)Hyyn-1 (n+N+DHuy -+ (n+2N —DHyon-—
n+DH, n+DH,p1 - (n+1DH,n_1
(n+2)H,11 n+2)H,12 - (n+2)H, 1y
(I’l + N)Ht1+N—l (I’l + N)Ht1+N e (n + N)H11+2N—2
0 Hypa -+ (N—=DHupn
0 Hn2 (N_l)HnN
T o (102)
0 Hn+N e (N - 1)Hn+2N72

Applying the dot product to equation (102), we obtain
Hn+D+--+@+N}+1+-+ (N =Dty = NN +n)tj.
Moreover, from the second term of equation (101), we have
d
XTyp =X (—a +xN) Ty-
Finally, we obtain

TN — TNg = (—x% +x2N — N(N + n)> Ty (103)
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From equations (99) and (103), we obtain equations (95) and (96). Thus we have proved
lemma 3.14. O

Continuing the similar but tedious calculations, we obtain the following shift operators
of third order.

Lemma 3.15.
R d3+3(N+1) d2+( (BN% + 6N + 2)x2+3N?+3nN + 7N
VDT 6| T el a2 ' "

d
+21 4 3) - + Nx(V + DV + 2)x?> — 3nN — 3N% — 4n — 9N — 6)};

(104)
1 d® d? d
'L’K,Bj: §|:— @+3NXE+((—3N2+1)X2—H+N)E
+Nx((N> = Dx%+ 2n):|t,’f, (105)
n 1 d3 d2 2 2 2

d
N =3+ Nx((N?>=3N +2)x*+3nN — 4n + 3N? — 9N + 6)};3.
(106)

Now we are ready to prove the proposition 3.7. Substituting the shift operators
in lemmas 3.13 and 3.14 into the identities (82) and (83) in lemma 3.11, we obtain
equations (72) and (73). Equation (74) is obtained in similar manner by using the shift
operators of fourth order, which will be given in the appendix. This completes the proof
of proposition 3.7. Proposition 3.9 is proved from the identities in lemma 3.12. Finally, to
prove proposition 3.8, it is necessary to calculate the shift operator&fokVe omit the
details, but this is done by simply replacing the recursion relations equation (65) by

d » N n d A n
aHn +xH, = Hn+1 aHn =nH, 1. (107)

Thus the proof of theorems 3.2 and 3.5 is completed.

4. Concluding remarks

In this article, we have investigated the hierarchies of rational solutionsyforaRd shown
that:

(1) solutions in—%z hierarchy are expressed in terms of 3-reduced Schur functions. In
particular, the Okamoto polynomials are nothing but their special cases;

(2) solutions in—2z and —1/z hierarchies are expressed in terms of a Casorati
determinant of the Hermite polynomials. Moreover, they are also expressed by special
cases of the Schur functions.

It might be an important and interesting problem to characterize the non-classical
polynomials which appears in the algebraic solutions of the Padnémuations listed in
[2] by studying the determinant expressions with the aid of results of the soliton theory.

We finally note that after obtaining the results, the authors were informed that Noumi
and Yamada have independently obtained the same expressions for the rational solutions of
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Py [21]. They adopted some symmetric expression fgr &d vertex operator approach

for proof, while we have used only ‘brute force’, namely, a determinantal technique. Indeed
the former approach is more elegant than the latter, but we did not use it since we plan to
work on discrete cases also. Actually, we do not have elegant tools to deal with solutions
of discrete Painle¥ equations yet.
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Appendix A. Derivation of Plicker relations

We consider the following identity of2N + 2) x (2N + 2) determinant,

01 .. N-1] Y ‘N N+1 ¢n
0= e AR (108)
) 3 0 N -2 N N+ 1 ¢
where %’ denotes the column vector,
Hn+k
H,
YW = i (109)
Hn+k+Nfl
and
0
0
pr=1|.1"- (110)
1

Applying the Laplace expansion on the right-hand side of equation (108), we obtain
0=10,....N—-2,N—1,N|x1]0,...N—2,N+1,¢1/—10,....,N—2,N—1, N + 1
x|0,...N—=2,N,¢1|+10,...,N —2, N — 1, ¢]
x[0,...N =2, N, N + 1| = 71 TN — Tya0Tvo + TN TN 0] (111)

which is nothing but equation (82). Similarly, equation (83) is derived from the following
identity,

01 .. N—1]| Y ‘N N+2 ¢
O=| . (112)
? 0 ... N-2'N N+2 ¢
Moreover, we have the following higher-order identities:
01 .. N-1] @ ‘N N+3 ¢
0 e ——_—
@ 0 ... N-2 /N N+3 ¢

=10,....,N—=2,N—1,N| x[0,...N —2, N + 3, ¢
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~10,....,.N—-2,N—1N+3/x1[0,...N —2, N, 1]
+10,....,N—=2,N—=1,¢4|x[0,...N—2,N, N + 3|

= Ty 1IN — TypaamTyo + Ty Ty afo (113)
01 .. N—-1] % ' N+1 N+2 ¢
O: 7777777777777777777777777777777777777777777777
%] 0 ... N-2 N+1 N+2 ¢

0,....N—2N—-1N+1x|0,...N—2 N+2
10,...,N—2N—LN+2/x1[0,...N—2,N+1,¢1|

O, . N—2N—L¢i|x0,...N—2N+1 N +2|

= Ty 10TNID — Ty pamTym + TN Ty (114)

Identities betweenr},.,, and ty}' are derived only by replacing; in the above
identities by

1
0

p2=1|.1- (115)
0

Appendix B. List of the shift operators

n 1 4 d3 2 2 2
TN = ﬂ[w — 2(2N + 3)x$ + {(6N“ 4+ 18N + 11)x“ — 6nN — 8n — 6N

d2
—22N — 18}F + x{(—4N3 — 18N? — 22N — 6)x? + 12N°3 + 12uN?
X

+58N? + 30N + 121 + 78N + 25}% + N{(N®+6N? + 11N + 6)x*
—(6nN? + 221N + 181 + 6N3 + 36N? + 66N + 36)x> + 3N 4 3n’N
+6nN? 4 18N? + 6n® + 24nN + 221 + 33N + 18}]@'{, (116)
[ d* o ) ) ) @2
ThED = é[@ — 22N+ 1) 5+ {(GN + 6N — 1)x?> — 2nN — 2N?2 — 6N — 2}@
+x{(—4N® — 6N? + 2N + 2)x?> + 41N? — 20N — 4n + 4N° + 10N?
+2N — 3}% + N{(N®+2N? = N — 2)x* + (—2N3 — 4N? — 2nN?
+2nN 4 6n + 2N + 4)x?> — N® + n®N — 2uN? — 2N? — 2n% — 4nN

o4+ N+ z}}; (117)
1 4 3 d2
T = 1—2[@ —4Nx 5 + {(6N? — 1)x?* + 4n + 2N} 5+ x{2N (—2N? 4 1)x?

d
—6nN — 2N? + ”E + N{N(N? — 1)x* + 2nNx? + 3N + 3n°N

+6nN2 —2n — 3N}]t,’\', (118)
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4 3 d2
dx4

1l d d
zgaj = g[— +20(=2N + Do + {(6N? — 6N — 1)x*+ 21N + 2N? — 6N + 245

n

&

+x{(—4N3 4+ 6N? + 2N — 2)x*> — 4N> — 4nN? + 10N? — 21N + 4n

—2N — 3}% + {(N® = 2N? — N 4+ 2)x* + (21N? + 21N — 6n + 2N3
—4N% — 2N + &x? — n®N + 2n* — 2a1N? + 4N — 2n — N*

+2N%2 4+ N — 2}]4 (119)

17 d* o?
=—| — —2N — 2_18N + 11)x? 2 — 22N
24[dx4+2x( +3)dx3+{(6N 8N + 11D)x“ 4 6N“ 4 6nN

d2
—8n + 18}@ + x{(—4N® + 18N? — 22N + 6)x? — 12N3 — 121 N?

d
+58N? + 30nN — 12n — 78N + 25}a + N{(N® — 6N? + 11N — 6)x*
+(6N® + 6nN? — 36N? — 22uN + 181 + 66N — 36)x? + 3N° + 3n’N
+6nN? — 18N? — 6n? — 241N + 221 + 33N — 18}]@’3. (120)
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