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Determinant structure of the rational solutions for the
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Abstract. Rational solutions for the Painlevé IV equation are investigated by Hirota bilinear
formalism. It is shown that the solutions in one hierarchy are expressed by 3-reduced Schur
functions, and those in another two hierarchies by Casorati determinants of the Hermite
polynomials, or by a special case of the Schur polynomials.

1. Introduction

It is known that the six Painlevé equations PI–PVI are the fundamental equations in the theory
of nonlinear integrable systems in wider sense, and thus their solutions are regarded as the
‘nonlinear version of special functions’ [1]. Not only for the use of Painlevé equations in
a physical context, they also have many interesting mathematical structures, one of which
is the structure of particular solutions. As for the algebraic solutions, it is known that
some of the Painlev́e equations admit rational solutions expressed by classical polynomials,
e.g. Jacobi and Legendre polynomials for PVI , Laguerre polynomials for PV and Hermite
polynomials for PIV . However, there also arise some non-classical polynomials, as pointed
out by Umemura [2]. A typical example is the Yablonskii–Vorobe’v polynomials which
appear in the rational solutions of PII ,

d2y

dt2
= 2y3+ ty + α. (1)

Let Tm (m = 0, 1, . . .) be polynomials generated recursively by

d2Tm

dt2
Tm −

(
dTm
dt

)2

= 1

4
(tT 2

m − Tm+1Tm−1) T0 = T1 = 1. (2)

Then, it is known that

y = d

dt
log

Tm+1

Tm
(3)

satisfies PII with α = −m − 1 [3, 4]. The characteristic polynomialsTm are called the
Yablonskii–Vorobe’v polynomials. To clarify the nature of these polynomials, it is useful
to study the relation with the soliton equations. In fact, PII is derived from the similarity
reduction of the modified KdV equation. This fact implies that the Yablonskii–Vorobe’v
polynomials are closely related to theτ function which gives the rational solutions of the
modified KdV equations. Based on this expectation, we have shown in the previous paper
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that Yablonskii–Vorobe’v polynomials are expressed as the specialization of the 2-reduced
Schur functions [5].

In this article, we investigate the rational solutions for PIV ,

d2w

dz2
= 1

2w

(
dw

dz

)2

+ 3

2
w3+ 4zw2+ 2(z2− α)w + β

w
(4)

whereα and β are parameters. There are various simple particular solutions of physical
importance [6], and it is possible to obtain solutions of ‘higher order’ by applying the
Bäcklund transformations [6–9] which map one solution to another solution of PIV with
different values of parameters. As for rational solutions of PIV (4), it is known that there
are three hierarchies of unique rational solutions [7] (the name of the hierarchies are due to
[10]),

‘−1/z hierarchy’:

w = Pn−1(z)

Qn(z)
(α, β) = (±k,−2(1+ 2l + k)2) k, l ∈ Z, l 6 −1, k 6 −2l (5)

‘−2z hierarchy’:

w = −2z+ Pn−1(z)

Qn(z)
(α, β) = (k,−2(1+ 2l + k)2) k, l ∈ Z, l > 0, k 6 −l (6)

‘− 2
3z hierarchy’:

w = −2

3
z+ Pn−1(z)

Qn(z)
(α, β) = (2k,−2(± 1

3 + 2l)2)

(2k + 1,−2(± 2
3 + 2l)2) k, l ∈ Z

(7)

wherePm(z) andQm(z) are some polynomials inz of degreem, and that there are no other
rational solutions.

Lukashevich has shown that the simplest solutions in the first two hierarchies
are expressed by the Hermite polynomials [11]. Okamoto has studied the Bäcklund
transformations and shown that the log derivative of ratio of two-directional Wronskians of
the Hermite polynomials give the solutions of PIV [12]. Moreover, Murata [7] has pointed
out that any solution in the−1/z hierarchy can be transformed to a solution in the−2z
hierarchy, and vice versa. This fact strongly implies that these two hierarchies have the
same nature, and the solutions may be expressed by a log derivative of the ratio of some
determinants whose entries are related to the Hermite polynomials. Those determinants
are called theτ functions. We investigate these hierarchies by using the Hirota’s bilinear
formalism and show that all of the solutions in those hierarchies are expressed by theτ

functions which is nothing but the Casorati determinants (or equivalently, the Wronskians)
of the Hermite polynomials. Moreover, theτ functions are also expressible in terms of the
Schur functions.

The structure of the solutions in− 2
3z hierarchy has been unknown, but Okamoto [12]

has studied this hierarchy and obtained the following result.

Proposition 1.1 (Okamoto).Let Qm, m ∈ Z>0, be polynomials inx generated by

d2

dx2
logQm + x2+ 2m− 1= Qm+1Qm−1

Q2
m

Q0 = Q1 = 1. (8)

Then

u = d

dx
log

Qm+1

Qm

− x (9)
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satisfies PIV ,

d2u

dx2
= 1

2u

(
du

dx

)2

+ 3

2
u3+ 6xu+ 9

2

(
x2− 4

3
m

)
u− 1

2u
. (10)

Similarly, letRm, m ∈ Z>0, be polynomials inx generated by

d2

dx2
logRm + x2+ 2m = Rm+1Rm−1

R2
m

R0 = 1 R1 = x. (11)

Then

u = d

dx
log

Rm+1

Rm
− x (12)

satisfies PIV ,

d2u

dx2
= 1

2u

(
du

dx

)2

+ 3

2
u3+ 6xu+ 9

2

(
x2− 4

3

(
m+ 1

2

))
u− 4

2u
. (13)

The characteristic polynomialsQm andRm are called the Okamoto polynomials [2]. Indeed,
the solutions which are expressed by the Okamoto polynomials are a special case of the
− 2

3z hierarchy.
The key to understanding the nature of the Okamoto polynomials lies in the relation

with soliton equations, as in the case of PII . In fact, several authors have pointed out the
relation between PIV and the Boussinesq equation [13–16] which belongs to the 3-reduction
of the KP hierarchy [17]. This implies that some solutions of PIV may be understood as the
similarity reduction of the 3-reduced KP hierarchy. We show that the solutions in the− 2

3z

hierarchy is indeed the case, namely they are expressed by the 3-reduced Schur functions.

2. − 2
3z Hierarchy

Let us consider the Schur functions inx1, x2, . . . labelled by the Young diagramY =
(i1, i2, i3, . . . , il), i1 > i2 > · · · > il > 0,

SY (x1, x2, . . .) =

∣∣∣∣∣∣∣∣
pi1 pi1+1 · · · pi1+l−1

pi2−1 pi2 · · · pi2+l−2
...

...
. . .

...

pil−l+1 pil−l+2 · · · pil

∣∣∣∣∣∣∣∣ (14)

wherepk ’s are polynomials inx1, x2, . . . defined by
∞∑
k=0

pk(x1, x2, . . .)λ
k = exp

∞∑
n=1

xkλ
k pn = 0(n < 0). (15)

It is well known thatSY is a τ function of the KP hierarchy [17].
We consider the 3-reduction of theτ function, namely, we impose the condition,

∂τY

∂x3k
= 0 k = 1, 2, . . . . (16)

To realize this condition, it is sufficient to restrict the Young diagram as

Y = (M + 2n,M + 2n− 2, . . . ,M + 2,M2, (M − 1)2, . . . ,22, 12) (17)

or

Y = (N + 2n− 1, N + 2n− 3, . . . , N + 1, N2, (N − 1)2, . . . ,22, 12). (18)
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In fact, we can easily verify that the Schur functions associated with the above Young
diagrams satisfy condition (16), by noting the relation,

∂pn

∂xk
= pn−k. (19)

For notational simplicity, we rearrange the structure of the Schur polynomials associated
with the Young diagrams (17) and (18) as

τNM(x1, x2, . . .) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . p2N−1 p2N p2N+1 . . . . . . . . . .

. . . . . . . . . . . p2N−3 p2N−2 p2N−1 · · ·
. . .

. . . . . . . . . . . . . . . . . . . . p3 p4 p5

. . . . . . . . . . . . . . . . . . . . p0 p1 p2

. . . p2M−2 p2M−1 p2M . . . . . . . . . .

. . . . . . . . . . . p2N−4 p2N−3 p2N−2 · · ·
. . .

. . . . . . . . . . . . . . . . . . . . p2 p3 p4

. . . . . . . . . . . . . . . . . . . . p−1 p0 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (20)

We can see the equivalence ofτNM and 3-reduced Schur functions in the following manner,

τNM =
{
S(M+2n,M+2n−2,...,M+2,M2,(M−1)2,...,12) for N = M + n > M

S(N+2n−1,N+2n−3,...,N+1,N2,(N−1)2,...,12) for N < M = N + n.
(21)

Then, we have the following theorem.

Theorem 2.1.Let x1 = x, x2 = 1
2, xk = 0(k = 3, 4, . . .) in τNM . Then

w =
√

2

3

{(
log

τNM+1

τNM

)
x

− x
}

z =
√

3

2
x (22)

satisfies PIV (4) with

(α, β) =
(

2M −N + 1,−2

(
N + 2

3

)2
)

M,N ∈ Z>0. (23)

Similarly,

w =
√

2

3

{(
log

τN+1
M

τNM

)
x

− x
}

z =
√

3

2
x (24)

satisfies PIV (4) with

(α, β) =
(
−M + 2N + 2,−2

(
M + 1

3

)2
)

M,N ∈ Z>0. (25)

Remark 2.2.The above solutions cover all of the− 2
3z hierarchy, which is easily verified

by comparing the parameters (23) and (25) with (7).

Corollary 2.3. The Okamoto polynomials are the special case of 3-reduced Schur functions,

Qm = τm0 = S(2m,2m−2,...,2)(x,
1
2, 0, . . .) Rm = τ 0

m = S(2n−1,2n−3,...,1)(x,
1
2, 0, . . .). (26)



The Painlev´e IV equation 2435

Theorem 2.1 is proved by considering the similarity reduction of 3-reduction of the first
modified KP hierarchy, namely, hierarchy of the Bäcklund transformations of the KP
hierarchy. The first three of the bilinear equations in this hierarchy are given by [17],

(D2
x1
−Dx2)τ

N
M+1 · τNM = 0 (27)

(D3
x1
+ 3Dx1Dx2)τ

N
M+1 · τNM = 0 (28)

(D4
x1
− 3D2

x1
Dx2 − 6D2

x2
)τNM+1 · τNM = 0 (29)

whereDx is the Hirota’s bilinear differential operator defined by

Dn
xf · g = (∂x − ∂x ′)nf (x)g(x ′)|x=x ′ . (30)

Next, we apply the similarity reduction.

Lemma 2.4.Let τMN = τMN (x1, x2, 0, 0, . . .). Then

∂x2τ
N
M =

1

2x2
((M2−MN +N2+N)τNM − x1∂x1τ

N
M). (31)

Proof. Note thatpk, the entry ofτNM , is a homogeneous polynomial in(x1, x2, x3, . . .)

with degreek if we define the degree ofxk as k. Puttingxk = 0 (k > 3), then τNM is a
homogeneous polynomial inx1 andx2 of degreeM2−MN +N2+N . Thus, if we set

f NM =
1

x
(M2−MN+N2+N)/2
2

τNM (32)

thenf NM depends only ont = x1

x
1/2
2

. This implies

∂x2f
N
M =

∂t

∂x2

d

dt
f NM = −

1

2

x1

x
3/2
2

d

dt
f NM (33)

∂x1f
N
M =

∂t

∂x1

d

dt
f NM =

1

x
1/2
2

d

dt
f NM (34)

which yields

−2x2∂x2f
N
M = x1∂x1f

N
M . (35)

Rewriting equation (35) in terms ofτNM , we obtain equation (31). �

By using lemma 2.4, all thex2 derivatives in equations (27)–(29) are rewritten in terms
of x1 derivatives as(
D2
x1
+ x1

2x2
Dx1 −

1

2x2
(2M −N + 1)

)
τNM+1 · τNM = 0 (36)(

D3
x1
− 3

2x2

(−x1D
2
x1
+ (2M −N + 1)Dx1 + ∂x1

))
τNM+1 · τNM = 0 (37)[

D4
x1
− 3

2x2
(−x1D

3
x1
+ (2M −N + 1)D2

x1
− 2∂x1Dx1)−

6

4x2
2

(x2
1D

2
x1

−2x1(2M −N + 1)Dx1 + 3x1∂x1 − (3N2+ 4N + 1))

]
τNM+1 · τNM = 0 (38)

respectively, where

∂x1Dx1f · g = fx1x1g − fgx1x1 (39)

∂x1f · g = ∂x1(fg) = fx1g + fgx1. (40)

Puttingx1 = x andx2 = 1
2, we have the following proposition.
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Proposition 2.5.τNM = τNM(x, 1
2, 0, . . .) andτNM+1 = τNM+1(x,

1
2, 0, . . .) satisfy the following

bilinear equations,

(D2
x + xDx − (2M −N + 1))τNM+1 · τNM = 0 (41)

(D3
x − 3(−xD2

x + (2M −N + 1)Dx + ∂x))τNM+1 · τNM = 0 (42)

[D4
x + 3xD3

x − 3{2x2+ (2M −N + 1)}D2
x + 12x(2M −N + 1)Dx

−6(−∂xDx + 3x∂1− (3N2+ 4N + 1))]τNM · τNM+1 = 0. (43)

Now the proof of theorem 2.1 is straightforward. Dividing equations (41)–(43) by
τNMτ

N
M+1 and using the formulae [19],

Dxτ
N
M · τNM+1

τNMτ
N
M+1

= φx (44)

D2
xτ

N
M · τNM+1

τNMτ
N
M+1

= ρxx + φ2
x (45)

D3
xτ

N
M · τNM+1

τNMτ
N
M+1

= φxxx + 3φxρxx + φ3
x (46)

D4
xτ

N
M · τNM+1

τNMτ
N
M+1

= ρxxxx + 4φxφxxx + 3ρ2
xx + 6φ2

xρxx + φ4
x (47)

∂xDxτ
N
M · τNM+1

τNMτ
N
M+1

= φxx + φxρx (48)

whereρ = log(τNMτ
N
M+1) andφ = log(τNM+1/τ

N
M), we obtain

ρxx + φ2
x + xφx − (2M −N + 1) = 0 (49)

φxxx + 3φxρxx + φ3
x − 3x(ρxx + φ2

x)+ 3(2M −N + 1)φx − 3ρx = 0 (50)

ρxxxx + 4φxφxxx + 3ρ2
xx + 6φ2

xρxx + φ4
x + 3x(φxxx + 3φxρxx + φ3

x)

−3(2M −N + 1+ 2x2)(ρxx + φ2
x)+ 12x(2M −N + 1)φx

+6(φxx + φxρx)− 18xρx + 6(3N2+ 4N + 1) = 0 (51)

respectively. Eliminatingρ and puttingu = φx − x, we obtain PIV ,

d2u

dx2
= 1

2u

(
du

dx

)2

+ 3

2
u3+ 6xu2+

(
9

2
x2− 3a

)
u− 3b + 1

2u
(52)

where,

a = 2M −N + 1 b = 3N2+ 4N + 1. (53)

This gives half of theorem 2.1. The other half is proved in a similar manner by starting
from the bilinear equations,

(D2
x1
−Dx2)τ

N+1
M · τNM = 0 (54)

(D3
x1
+ 3Dx1Dx2)τ

N+1
M · τNM = 0 (55)

(D4
x1
− 3D2

x1
Dx2 − 6D2

x2
)τN+1
M · τNM = 0 (56)

from which we obtain equation (52) foru = (logτN+1
M /τNM) − x with a = −M + 2N + 2

andb = 3M2+ 2M. This completes the proof of theorem 2.1.
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3. −1/z and −2z hierarchies

3.1. τ function

As mentioned in the introduction, solutions in the−1/z and −2z hierarchies can be
transformed into each other by Bäcklund transformations. From the view ofτ functions,
this fact suggests that theirτ functions are the same, and only the relation between theτ

functions and the dependent variable of PIV is different.

Definition 3.1.Let Hn andĤn, n = 0, 1, 2 . . ., be polynomials inx defined by
∞∑
n=0

1

n!
Hnλ

n = exp

(
xλ− 1

2
λ2

)
(57)

∞∑
n=0

1

n!
Ĥnλ

n = exp

(
xλ+ 1

2
λ2

)
(58)

respectively. Then we define theτ functionsτnN and τ̂ nN to beN × N determinants given
by

τnN =

∣∣∣∣∣∣∣∣
Hn Hn+1 · · · Hn+N−1

Hn+1 Hn+2 · · · Hn+N
...

...
. . .

...

Hn+N−1 Hn+N · · · Hn+2N−2

∣∣∣∣∣∣∣∣ (59)

τ̂ nN =

∣∣∣∣∣∣∣∣
Ĥn Ĥn+1 · · · Ĥn+N−1

Ĥn+1 Ĥn+2 · · · Ĥn+N
...

...
. . .

...

Ĥn+N−1 Ĥn+N · · · Ĥn+2N−2

∣∣∣∣∣∣∣∣ (60)

respectively.

Then, the solutions in the−1/z hierarchy are expressed as follows.

Theorem 3.2.

w = −
√

2

(
log

τnN+1

τnN

)
x

z = 1√
2
x (61)

give rational solutions of PIV (4) with

(α, β) = (−(n+ 2N + 1),−2n2) n,N ∈ Z n > 1 N > 0. (62)

Moreover,

w =
√

2

(
log

τ̂ nN+1

τ̂ nN

)
x

z = 1√
2
x (63)

give rational solutions of PIV (4) with

(α, β) = (n+ 2N + 1,−2n2) n,N ∈ Z n > 1 N > 0. (64)

Here, several remarks are in order.

Remark 3.3.
(1) Parametrization equation (62) is equivalent to equation (5) withα = −k if we put

k = n+ 2N + 1 andl = −(N + 1). Moreover, equation (64) is equivalent to equation (5)
with α = k if we put k = n+2N+1 andl = −(N+1). Hence the solutions in theorem 3.2
cover all of−1/z hierarchy.
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(2) As shown in the proof,n do not necessarily have to be integers and henceHn can
be the Hermite–Weber functions. In fact, we need only the recursion relations,

d

dx
Hn − xHn = −Hn+1

d

dx
Hn = nHn−1. (65)

Moreover,τ function admits several expressions.

Remark 3.4.
(1) It is possible to express the solutions in terms of the Wronskian, since we have the

relation,∣∣∣∣∣∣∣∣
Hn Hn+1 · · · Hn+N−1

Hn+1 Hn+2 · · · Hn+N
...

...
. . .

...

Hn+N−1 Hn+N · · · Hn+2N−2

∣∣∣∣∣∣∣∣ =
N−1∏
k=1

(n+ k)k

×

∣∣∣∣∣∣∣∣∣
Hn+N−1

d
dxHn+N−1 · · · (

d
dx

)N−1
Hn+N−1

d
dxHn+N−1

d2

dx2Hn+N−1 · · · (
d

dx

)N
Hn+N−1

...
...

. . .
...(

d
dx

)N−1
Hn+N−1

(
d

dx

)N
Hn+N−1 · · ·

(
d

dx

)2N−2
Hn+N−1

∣∣∣∣∣∣∣∣∣ (66)

which can be verified by using equation (65).
(2) As is obvious from the Wronskian expression equation (66),τ 0

N only gives a constant,
which yields a 0 solution of PIV . Thus only the cases ofn > 1 give nontrivial solutions.

(3) τ functions are also expressed by the Schur functions. In fact we have, for example,

τ̂ nN =
(n+N − 1)!

(n− 1)!
(−1)N(N−1)/2S(nN )(x,

1
2, 0, . . .) (67)

where,

k! = k!k(k − 1)!(k−1) . . .2!21!1

which can be verified by noting

Ĥn = 1

n!
pn(x,

1
2, 0, . . .) (68)

and equation (66).

For the solutions in the−2z hierarchy, the following expression is valid.

Theorem 3.5.

w =
√

2

{(
log

τnN+1

τn+1
N

)
x

− x
}

z = 1√
2
x (69)

give rational solutions of PIV (4) with

(α, β) = (N − n,−2(n+N + 1)2) n,N ∈ Z n > 0 N > 0. (70)

Remark 3.6.
(1) Parametrization equation (70) is equivalent to equation (6), if we putk = N − n,

l = N . Hence the solutions in theorem 3.5 covers all the solutions in the−2z hierarchy.
(2) Anotherτ function τ̂ nN (60) can give the solution of the same type for PIV . In fact,

we can show that

ŵ = −
√

2

{
log

(
τ̂ nN+1

τ̂ n+1
N

)
x

− x
}

z = 1√
2
x (71)
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satisfies PIV with the parameters(α, β) = (n−N,−2(n+N+1)2). This parametrization is
also equivalent to equation (6), if we putk = n−N , l = n. However, the uniqueness of the
rational solutions [7, 18] implies that they give the same solution as given in theorem 3.5.
In fact, we can check thatw andŵ are the same if we exchangen andN .

3.2. Proof of theorems

In this section, we give the proof of the theorems 3.2 and 3.5. The first half of theorem 3.2
is a direct consequence of the following proposition.

Proposition 3.7.τnN satisfies the following bilinear equations.

(D2
x − xDx + n)τnN+1 · τnN = 0 (72)(
D3
x − 6xD2

x + (5x2+ n− 4N − 2)Dx + d

dx
− 5nx

)
τnN+1 · τnN = 0 (73)(

D4
x − 4xD3

x + (11x2− 8n− 28N − 14)D2
x

−2
d

dx
Dx − 2x(4x2− 3n− 20N − 10)Dx

− 3x
d

dx
+ 8nx2− n(9n+ 28N + 14)

)
τnN+1 · τnN = 0. (74)

The second half of theorem 3.2 is derived from the following bilinear equations.

Proposition 3.8.τ̂ nN satisfies the following bilinear equations.

(D2
x + xDx − n)τ̂ nN+1 · τ̂ nN = 0 (75)(
D3
x + 6xD2

x + (5x2− n+ 4N + 2)Dx − d

dx
− 5nx

)
τ̂ nN+1 · τ̂ nN = 0 (76)(

D4
x + 4xD3

x + (11x2+ 8n+ 28N + 14)D2
x

+2
d

dx
Dx + 2x(4x2+ 3n+ 20N + 10)Dx

−3x
d

dx
− 8nx2− n(9n+ 28N + 14)

)
τ̂ nN+1 · τ̂ nN = 0. (77)

Finally, theorem 3.5 is obtained from the following bilinear equations.

Proposition 3.9.τnN satisfies the following bilinear equations.

(D2
x − xDx + n−N)τnN+1 · τn+1

N = 0 (78)(
D3
x − 6xD2

x + (5x2+ n−N)Dx + d

dx
− 5(n−N)x

)
τnN+1 · τn+1

N = 0 (79)(
D4
x − 4xD3

x + (11x2− 8n− 28N − 18)D2
x + 2

d

dx
Dx

−2x(4x2− 3n− 15N − 9)Dx − x d

dx
+ 8(n−N)x2

−(9n2+ 10Nn+ 14n− 27N2− 22N)

)
τnN+1 · τn+1

N = 0. (80)

To prove propositions 3.7–3.9, we first introduce the notationτnNY .
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Definition 3.10.Let Y = (i1, i2, . . . , ih) be a Young diagram. Then we define anN × N
determinantτnNY by

τnNY =

∣∣∣∣∣∣∣
Hn Hn+1 · · · Hn+N−h−1 Hn+N−h+ih · · · Hn+N−2+i2 Hn+N−1+i1
Hn+1 Hn+2 · · · Hn+N−h Hn+N−h+1+ih · · · Hn+N−1+i2 Hn+N+i1
.
.
.

.

.

. · · ·
.
.
.

.

.

. · · ·
.
.
.

.

.

.

Hn+N−1 HN · · · Hn+2N−h−2 Hn+2N−h−1+ih · · · Hn+2N−3+i2 Hn+2N−2+i1

∣∣∣∣∣∣∣ . (81)

It is possible to derive the bilinear equations from the Plücker relations which are
identities between the determinants whose columns are shifted. In fact, proposition 3.7 is
obtained from the following identities.

Lemma 3.11.

τnN+1 τ
n
N − τnN+1 τ

n
N + τnN+1τ

n
N = 0 (82)

τnN+1 τnN − τnN+1 τnN + τnN+1τ
n
N = 0 (83)

τnN+1τ
n
N − τnN+1 τnN + τnNτnN+1 = 0 (84)

τnN+1 τ
n
N − τnN+1 τnN + τnNτnN+1 = 0. (85)

Proposition 3.8 is derived from the same identity inτ̂ nN . Similarly, we obtain proposition 3.9
from the following identities.

Lemma 3.12.

τnN+1 τ
n+1
N − τnN+1 τ

n+1
N + τnN+1τ

n+1
N = 0 (86)

τnN+1 τn+1
N − τnN+1 τn+1

N + τnN+1τ
n+1
N = 0 (87)

τnN+1τ
n+1
N − τnN+1 τn+1

N + τnNτn+1
N+1 = 0 (88)

τnN+1 τ
n+1
N − τnN+1 τn+1

N + τn+1
N τnN+1 = 0. (89)

We give the derivations of lemmas 3.11 and 3.12 in the appendix.
We next construct the shift operators which are differential operators generatingτnNY

from τnN by using the technique developed in [20, 5]. In fact, we have the following lemma.

Lemma 3.13.

τnN =
(
− d

dx
+ xN

)
τnN . (90)

Proof. Note thatτnN is expressed by

τnN =


Hn+1 Hn+2 · · · Hn+N
Hn+2 Hn+3 · · · Hn+N+1
...

...
. . .

...

Hn+N Hn+N+1 · · · Hn+2N−1

 ·

111 112 · · · 11N

121 122 · · · 12N
...

...
. . .

...

1N1 1N2 · · · 1NN

 (91)

where1ij is the(i, j)-cofactor ofτnN andA ·B denotes a standard scalar product forN×N
matricesA = (aij ) andB = (bij ) which is defined as

A · B =
N∑

i,j=1

aij bij = TrAtB. (92)
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The first matrix of (91) is rewritten by using the recursion relation (65) as

−


∂xHn ∂xHn+1 · · · ∂xHn+N−1

∂xHn+1 ∂xHn+2 · · · ∂xHn+N
...

...
. . .

...

∂xHn+N−1 ∂xHn+N · · · ∂xHn+2N−2



+x


Hn Hn+1 · · · Hn+N−1

Hn+1 Hn+2 · · · Hn+N
...

...
. . .

...

Hn+N−1 Hn+N · · · Hn+2N−2

 . (93)

Then applying the dot product to equation (93), we obtain

τnN =
(
− d

dx
+ xN

)
τnN . (94)

Thus we have proved lemma 3.13. �

For the shift operators of second order, we have the following.

Lemma 3.14.

τnN = 1

2

(
d2

dx2
− (2N + 1)x

d

dx
+ x2N(N − 1)−N(N + n+ 1)

)
τnN (95)

τnN =
1

2

(
d2

dx2
− (2N − 1)x

d

dx
+N(N − 1)x2+N(N + n− 1)

)
τnN . (96)

Proof. We consider

τnN + τnN =


Hn+1 Hn+2 · · · Hn+N−1 Hn+N+1

Hn+2 Hn+3 · · · Hn+N Hn+N+2
...

...
...

...
...

Hn+N Hn+N+1 · · · Hn+2N−2 Hn+2N



·


1 11 1 12 · · · 1 1N

1 21 1 22 · · · 1 2N
...

...
. . .

...

1 N1 1 N2 · · · 1 NN

 (97)

where1 ij is (i, j) cofactor ofτN . The first matrix in the right-hand side is equal to

−


∂xHn ∂xHn+1 · · · ∂xHn+N−2 ∂xHn+N
∂xHn+1 ∂xHn+2 · · · ∂xHn+N−1 ∂xHn+N+1
...

...
...

...
...

∂xHn+N−1 ∂xHn+N · · · ∂xHn+2N−1 ∂xHn+2N−1



+x


Hn Hn+1 · · · Hn+N−2 Hn+N
Hn+1 Hn+2 · · · Hn+N−1 Hn+N+1
...

...
...

...
...

Hn+N−1 Hn+N · · · Hn+2N−1 Hn+2N−1

 . (98)
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Applying the dot product to equation (98), we obtain,

τnN + τnN =
(
− d

dx
+ xN

)
τnN

=
(

d2

dx2
− 2xN

d

dx
−N + x2N2

)
τnN . (99)

Next we consider the following equality,

τnN − τnN =


Hn+2 Hn+3 · · · Hn+N+1

Hn+3 Hn+4 · · · Hn+N+2
...

...
. . .

...

Hn+N+1 Hn+N+2 · · · Hn+2N

 ·

111 112 · · · 11N

121 122 · · · 12N
...

...
. . .

...

1N1 1N2 · · · 1NN

 . (100)

The first matrix of the right hand side of (100) is rewritten as

−


∂xHn+1 ∂xHn+2 · · · ∂xHn+N
∂xHn+2 ∂xHn+3 · · · ∂xHn+N+1
...

...
. . .

...

∂xHn+N ∂xHn+N+1 · · · ∂xHn+2N−1



+x


Hn+1 Hn+2 · · · Hn+N
Hn+2 Hn+3 · · · Hn+N+1
...

...
. . .

...

Hn+N Hn+N+1 · · · Hn+2N−1

 . (101)

The first matrix of equation (101) is rewritten as
(n+ 1)Hn (n+ 2)Hn+1 · · · (n+N)Hn+N−1

(n+ 2)Hn+1 (n+ 3)Hn+2 · · · (n+N + 1)Hn+N
...

...
. . .

...

(n+N)Hn+N−1 (n+N + 1)Hn+N · · · (n+ 2N − 1)Hn+2N−2



=


(n+ 1)Hn (n+ 1)Hn+1 · · · (n+ 1)Hn+N−1

(n+ 2)Hn+1 (n+ 2)Hn+2 · · · (n+ 2)Hn+N
...

...
. . .

...

(n+N)Hn+N−1 (n+N)Hn+N · · · (n+N)Hn+2N−2



+


0 Hn+1 · · · (N − 1)Hn+N−1

0 Hn+2 · · · (N − 1)Hn+N
...

...
. . .

...

0 Hn+N · · · (N − 1)Hn+2N−2

 . (102)

Applying the dot product to equation (102), we obtain

[{(n+ 1)+ · · · + (n+N)} + 1+ · · · + (N − 1)]τnN = N(N + n)τnN .
Moreover, from the second term of equation (101), we have

xτN = x
(
− d

dx
+ xN

)
τnN .

Finally, we obtain

τnN − τnN =
(
−x d

dx
+ x2N −N(N + n)

)
τnN . (103)
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From equations (99) and (103), we obtain equations (95) and (96). Thus we have proved
lemma 3.14. �

Continuing the similar but tedious calculations, we obtain the following shift operators
of third order.

Lemma 3.15.

τnN = 1

6

[
− d3

dx3
+ 3(N + 1)x

d2

dx2
+ (−(3N2+ 6N + 2)x2+ 3N2+ 3nN + 7N

+2n+ 3)
d

dx
+Nx((N + 1)(N + 2)x2− 3nN − 3N2− 4n− 9N − 6)

]
τnN

(104)

τnN = 1

3

[
− d3

dx3
+ 3Nx

d2

dx2
+ ((−3N2+ 1)x2− n+N) d

dx

+Nx((N2− 1)x2+ 2n)

]
τnN (105)

τnN =
1

6

[
− d3

dx3
+ 3x(N − 1)

d2

dx2
+ ((−3N2+ 6N − 2)x2− 3nN + 2n− 3N2

+7N − 3)
d

dx
+Nx((N2− 3N + 2)x2+ 3nN − 4n+ 3N2− 9N + 6)

]
τnN .

(106)

Now we are ready to prove the proposition 3.7. Substituting the shift operators
in lemmas 3.13 and 3.14 into the identities (82) and (83) in lemma 3.11, we obtain
equations (72) and (73). Equation (74) is obtained in similar manner by using the shift
operators of fourth order, which will be given in the appendix. This completes the proof
of proposition 3.7. Proposition 3.9 is proved from the identities in lemma 3.12. Finally, to
prove proposition 3.8, it is necessary to calculate the shift operators forτ̂ nN . We omit the
details, but this is done by simply replacing the recursion relations equation (65) by

d

dx
Ĥn + xĤn = Ĥn+1

d

dx
Ĥn = nĤn−1. (107)

Thus the proof of theorems 3.2 and 3.5 is completed.

4. Concluding remarks

In this article, we have investigated the hierarchies of rational solutions for PIV , and shown
that:

(1) solutions in− 2
3z hierarchy are expressed in terms of 3-reduced Schur functions. In

particular, the Okamoto polynomials are nothing but their special cases;
(2) solutions in−2z and −1/z hierarchies are expressed in terms of a Casorati

determinant of the Hermite polynomials. Moreover, they are also expressed by special
cases of the Schur functions.

It might be an important and interesting problem to characterize the non-classical
polynomials which appears in the algebraic solutions of the Painlevé equations listed in
[2] by studying the determinant expressions with the aid of results of the soliton theory.

We finally note that after obtaining the results, the authors were informed that Noumi
and Yamada have independently obtained the same expressions for the rational solutions of
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PIV [21]. They adopted some symmetric expression for PIV and vertex operator approach
for proof, while we have used only ‘brute force’, namely, a determinantal technique. Indeed
the former approach is more elegant than the latter, but we did not use it since we plan to
work on discrete cases also. Actually, we do not have elegant tools to deal with solutions
of discrete Painlev́e equations yet.
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Appendix A. Derivation of Plücker relations

We consider the following identity of(2N + 2)× (2N + 2) determinant,

0=
∣∣∣∣∣∣

0 1 . . . N − 1 ∅ N N + 1 φ1

∅ 0 . . . N − 2 N N + 1 φ1

∣∣∣∣∣∣ (108)

where ‘k’ denotes the column vector,

‘k’ =


Hn+k
Hn+k+1
...

Hn+k+N−1

 (109)

and

φ1 =


0
0
...

1

 . (110)

Applying the Laplace expansion on the right-hand side of equation (108), we obtain

0= |0, . . . , N − 2, N − 1, N | × |0, . . . N − 2, N + 1, φ1| − |0, . . . , N − 2, N − 1, N + 1|
×|0, . . . N − 2, N, φ1| + |0, . . . , N − 2, N − 1, φ1|
×|0, . . . N − 2, N,N + 1| = τnN+1τ

n
N − τnN+1 τ

n
N + τnNτnN+1 (111)

which is nothing but equation (82). Similarly, equation (83) is derived from the following
identity,

0=
∣∣∣∣∣∣

0 1 . . . N − 1 ∅ N N + 2 φ1

∅ 0 . . . N − 2 N N + 2 φ1

∣∣∣∣∣∣ . (112)

Moreover, we have the following higher-order identities:

0=
∣∣∣∣∣∣

0 1 . . . N − 1 Ø N N + 3 φ1

Ø 0 . . . N − 2 N N + 3 φ1

∣∣∣∣∣∣
= |0, . . . , N − 2, N − 1, N | × |0, . . . N − 2, N + 3, φ1|
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−|0, . . . , N − 2, N − 1, N + 3| × |0, . . . N − 2, N, φ1|
+|0, . . . , N − 2, N − 1, φ1| × |0, . . . N − 2, N,N + 3|
= τnN+1τ

n
N − τnN+1 τnN + τnNτnN+1 (113)

0=
∣∣∣∣∣∣

0 1 . . . N − 1 Ø N + 1 N + 2 φ1

Ø 0 . . . N − 2 N + 1 N + 2 φ1

∣∣∣∣∣∣
= |0, . . . , N − 2, N − 1, N + 1| × |0, . . . N − 2, N + 2, φ1|
−|0, . . . , N − 2, N − 1, N + 2| × |0, . . . N − 2, N + 1, φ1|
+|0, . . . , N − 2, N − 1, φ1| × |0, . . . N − 2, N + 1, N + 2|
= τnN+1 τ

n
N − τnN+1 τnN + τnNτnN+1 . (114)

Identities betweenτnN+1Y and τn+1
NY are derived only by replacingφ1 in the above

identities by

φ2 =


1
0
...

0

 . (115)

Appendix B. List of the shift operators

τnN = 1

24

[
d4

dx4
− 2(2N + 3)x

d3

dx3
+ {(6N2+ 18N + 11)x2− 6nN − 8n− 6N2

−22N − 18} d2

dx2
+ x{(−4N3− 18N2− 22N − 6)x2+ 12N3+ 12nN2

+58N2+ 30nN + 12n+ 78N + 25} d

dx
+N{(N3+ 6N2+ 11N + 6)x4

−(6nN2+ 22nN + 18n+ 6N3+ 36N2+ 66N + 36)x2+ 3N3+ 3n2N

+6nN2+ 18N2+ 6n2+ 24nN + 22n+ 33N + 18}
]
τnN (116)

τnN = 1

8

[
d4

dx4
− 2x(2N + 1)

d3

dx3
+
{
(6N2+ 6N − 1)x2− 2nN − 2N2− 6N − 2

}
d2

dx2

+x{(−4N3− 6N2+ 2N + 2)x2+ 4nN2− 2nN − 4n+ 4N3+ 10N2

+2N − 3} d

dx
+N{(N3+ 2N2−N − 2)x4+ (−2N3− 4N2− 2nN2

+2nN + 6n+ 2N + 4)x2−N3+ n2N − 2nN2− 2N2− 2n2− 4nN

−2n+N + 2}
]
τnN (117)

τnN = 1

12

[
d4

dx4
− 4Nx

d3

dx3
+ {(6N2− 1)x2+ 4n+ 2N} d2

dx2
+ x{2N(−2N2+ 1)x2

−6nN − 2N2+ 1} d

dx
+N{N(N2− 1)x4+ 2nNx2+ 3N3+ 3n2N

+6nN2− 2n− 3N}
]
τnN (118)
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τnN = 1

8

[
d4

dx4
+ 2x(−2N + 1)

d3

dx3
+ {(6N2− 6N − 1)x2+ 2nN + 2N2− 6N + 2} d2

dx2

+x{(−4N3+ 6N2+ 2N − 2)x2− 4N3− 4nN2+ 10N2− 2nN + 4n

−2N − 3} d

dx
+ {(N3− 2N2−N + 2)x4+ (2nN2+ 2nN − 6n+ 2N3

−4N2− 2N + 4)x2− n2N + 2n2− 2nN2+ 4nN − 2n−N3

+2N2+N − 2}
]
τnN (119)

τnN =
1

24

[
d4

dx4
+ 2x(−2N + 3)

d3

dx3
+ {(6N2− 18N + 11)x2+ 6N2+ 6nN − 22N

−8n+ 18} d2

dx2
+ x{(−4N3+ 18N2− 22N + 6)x2− 12N3− 12nN2

+58N2+ 30nN − 12n− 78N + 25} d

dx
+N{(N3− 6N2+ 11N − 6)x4

+(6N3+ 6nN2− 36N2− 22nN + 18n+ 66N − 36)x2+ 3N3+ 3n2N

+6nN2− 18N2− 6n2− 24nN + 22n+ 33N − 18}
]
τnN . (120)
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